Artikel 20 augustus 2021

Ook jouw ml-model is interessante buit voor hacker

Aan beveiligingsuitdagingen geen gebrek, maar er moet wel een nieuw hoofdstuk aan worden toegevoegd: de beveiliging van de nodige tijd en geld kostende machine learning-modellen. Elke onderneming zou zich de vraag moeten stellen: welke risico’s lopen wij als ons nieuwe machine learning-model wordt gehackt? Om dan vaak tot de ontnuchterende conclusie te moeten komen dat ze geen idee hebben.

De meeste organisaties voeren controles uit om te voorkomen dat beslissingen discriminerend zijn of anderszins blijk geven van bias. Ook wordt gecheckt of er geen fouten worden gemaakt omdat de data in de loop van de tijd zijn veranderd. Helaas zijn machine learning (ml)-algoritmen net zo kwetsbaar voor cyberaanvallen van buitenaf als bedrijfsprocessen waar bijvoorbeeld bankgegevens aan te pas komen.

En als de integriteit van het model niet meer is te garanderen, kunnen je investeringen en al het harde werk van je data scientists weleens in de prullenbak belanden. Zo introduceerde Microsoft in 2016 de op ai gebaseerde Twitter-bot Tay. Dit ml-model was ontwikkeld om automatisch tweets over bepaalde gebeurtenissen te genereren. Nog geen 24 uur later was deze volkomen onschuldige chatbot gecorrumpeerd door cynische hackers. Tay genereerde hierdoor een spervuur van racistische en seksistische uitlatingen. Een prima functionerend model was gesaboteerd om schade aan te richten, terwijl Microsoft het juist met het tegenovergestelde doel had ontwikkeld.

Lees het volledige artikel op computable.nl

Ook interessant